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Santé et de la Recherche Médicale (INSERM) U964, Centre National de la Recherche Scientifique (CNRS) UMR 7104, Université de
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SUMMARY

The bioactive form of vitamin D [1,25(OH)2D3] regu-
lates mineral and bone homeostasis and exerts
potent anti-inflammatory and antiproliferative prop-
erties through binding to the vitamin D receptor
(VDR). The 3D structures of the VDR ligand-binding
domain with 1,25(OH)2D3 or gemini analogs unveiled
the molecular mechanism underlying ligand recogni-
tion. On the basis of structure-function correlations,
we generated a point-mutated VDR (VDRgem) that
is unresponsive to 1,25(OH)2D3, but the activity of
which is efficiently induced by the gemini ligands.
Moreover, we show that many VDR target genes
are repressed by unliganded VDRgem and that min-
eral ion and bone homeostasis are more impaired
in VDRgemmice than in VDR null mice, demonstrating
that mutations abolishing VDR ligand binding result
in more severe skeletal defects than VDR null muta-
tions. As gemini ligands induce VDRgem transcrip-
tional activity in mice and normalize their serum
calcium levels, VDRgem is a powerful tool to further
unravel both liganded and unliganded VDR signaling.

INTRODUCTION

The active form of vitamin D, 1a,25-dihydroxyvitamin D3
[1,25(OH)2D3], plays a key role in mineral and bone homeostasis
(Bouillon et al., 2008; Bouillon and Suda, 2014; Lieben and Car-
meliet, 2013b). Indeed, 1,25(OH)2D3 deficiency induced by low

sunlight exposure or the lack of functional 25(OH)-vitaminD3-
1a-hydroxylase (Cyp27b1), the enzyme that catalyzes the
hydroxylation of 25(OH)D3 to 1,25(OH)2D3, in pseudovitamin
D-deficiency rickets (PDRR, also termed vitamin D-dependent
rickets type I [VDRR-I]), induces skeletal deformities, osteoma-
lacia, hypocalcemia, hypophosphatemia, and secondary hyper-
parathyroidism, which can be treated by 1,25(OH)2D3 or analogs
(Dardenne et al., 2001, 2003; Lips, 2006; Panda et al., 2001).
1,25(OH)2D3, through binding to the vitamin D receptor (VDR;
NR1I1), a member of the nuclear receptor superfamily, regulates
the expression of many target genes in various tissues (Bouillon
et al., 2008). VDR loss-of-function mutations in humans, termed
hereditary vitamin D-resistant rickets (HVDRRs) or VDDR-II, and
VDR-null mice exhibit typical hallmarks of rickets (Li et al., 1997;
Malloy et al., 2014; Yoshizawa et al., 1997). In contrast to
Cyp27b1 null mice and patients expressing a mutated VDR
with reduced affinity for 1,25(OH)2D3, VDR DNA-binding-defi-
cient patients and VDR-null mice exhibit alopecia. Hair follicle
defects in VDR null mice are prevented by transgenic expression
of full-length or ligand-binding-deficient VDR in keratinocytes
(Skorija et al., 2005). Thus, whereas liganded VDR is essential
formineral and bone homeostasis, ligand-independent functions
of VDR maintain hair follicle homeostasis (Chen et al., 2001; Lie-
ben et al., 2011; Malloy and Feldman, 2011; Skorija et al., 2005).
1,25(OH)2D3 also has potent anti-inflammatory and antiprolifera-
tive properties and is thus a potential pharmacological agent
to treat various diseases, including autoimmune disorders, in-
fections, and cancer (Adorini et al., 2007). Nevertheless, the
1,25(OH)2D3 doses required to elicit such effects induce hyper-
calcemia, resulting in ectopic calcification of the vascular wall,
kidney, and other soft tissues, leading to organ failure and death
(Adorini et al., 2007; Bouillon et al., 2008).
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In order to dissociate the calcemic activities of 1,25(OH)2D3

from its anti-inflammatory and antiproliferative properties,
more than 3,000 analogs were synthesized using medicinal
chemistry approaches (Adorini et al., 2007; Laverny et al.,
2009; Leyssens et al., 2014). Even though the resolution of the
VDR ligand binding domain (LBD) 3D structure facilitates the
design of VDR agonists, no potent antiproliferative and/or anti-
inflammatory compounds devoid of hypercalcemic activities
have been obtained (Laverny et al., 2009; Lee et al., 2008).
Furthermore, available mouse lines in which 1,25(OH)2D3 or
VDR signaling is impaired exhibit limitations for identifying
tissue-specific ligand-dependent and ligand-independent VDR
activities. Indeed, all VDR-mediated effects are abolished in
various organs of VDR null mice, and compensatory mecha-
nisms occur in tissue-specific VDR null mice (Lieben and Carme-
liet, 2013a; Lieben et al., 2012; Yoshizawa et al., 1997). In addi-
tion, increased circulating levels of the low-affinity VDR ligand
25(OH)D3 in 1,25(OH)2D3-deficient Cyp27b1 null mice might
partially induce VDR target genes (Lou et al., 2010; Panda
et al., 2001).
Among the various synthetic vitamin D analogs, the gemini

family is characterized by an additional aliphatic side chain.
These ligands induce specific conformational changes in the
Danio rerio VDR ligand binding pocket (LBP), including a reorien-
tation of the side chain of Leu337, the second N-terminal Leu of
helix 7, which opens a pocket that accommodates the second
side chain of such ligands (Ciesielski et al., 2007; Huet et al.,
2011). We previously showed that the substitution of the corre-
sponding amino acid in human VDR (Leu309) with hydrophobic
residues (Met and Phe) had little or no effect on 1,25(OH)2D3-
and gemini-induced transcriptional activity (Ciesielski et al.,
2007).
In the present study, we report that substitution of the second

N-terminal Leu residue of VDR helix 7 with the hydrophilic resi-
due His (VDRgem) impairs binding of 1,25(OH)2D3, but not of
the gemini synthetic analogs and reveal the underlyingmolecular
mechanisms. Based on the unique characteristics of this recep-
tor variant, we generated mice bearing this substitution to eval-
uate the in vivo role of unliganded and liganded VDR and further
characterize VDR signaling.

RESULTS

Substitution of zVDR Leucine 337 or hVDR Leucine 309
by a Histidine Impairs Binding of 1,25(OH)2D3 but Not of
Gemini
With the aim to impair 1,25(OH)2D3 binding to its receptor without
affecting binding of gemini analogs, we substituted the Danio re-
rio VDR (zVDR) Leu337 by a hydrophilic His residue (zVDRgem)
(Figures 1A and 1B) and analyzed the functional consequences.
In vitro binding of 1,25(OH)2D3 or gemini [1,25-dihydroxy-21-(3-
hydroxy-3-methylbutyl)-vitamin D3] was monitored by electro-
spray-ionization mass spectrometry (ESI-MS) under nondenatu-
rating conditions using purified bacterially-produced LBDs of
zVDR and zVDRgem. In the presence of a 5-fold molar excess
of 1,25(OH)2D3 or gemini, more than 90% of the zVDR LBDs
bind the ligand at a 1:1 ratio (Figure S1). Under similar ligand con-
centrations, 90% of the zVDRgem LBDs bind gemini, whereas

only 10% are liganded with 1,25(OH)2D3 (Figures 1C and 1D).
The capillary voltages at which 50% of the complexes are disso-
ciated (VC50) for zVDR-1,25(OH)2D3, zVDR-gemini, and
zVDRgem-gemini are in the same range (i.e., 149, 153, and 152
V, respectively), indicating a similar binding affinity of both li-
gands for zVDR and of the gemini ligand for both receptors
(Table S1). In contrast, the 90% of zVDRgem detected in pres-
ence of 1,25(OH)2D3 correspond to those of the unliganded
receptor (Figure 1C). Consequently, the corresponding VC50
could not be determined. Similar results were obtained by sub-
stituting the human VDR Leu309 by a His (hVDRgem) (Figure S2;
Table S1A). Thus, in contrast to VDR, VDRgem exhibits a strong
binding preference for gemini over 1,25(OH)2D3.
To characterize the molecular mechanisms underlying this

preferential ligand binding, zVDRgem LBD was crystallized in
the presence of 3-fold excess of either 1,25(OH)2D3, gemini or
the gemini analog 1,25-dihydroxy-21(3-hydroxy-3-trifluomethyl-
4-trifluoro-butynyl)-26,27-hexadeutero-19-nor-20S-vitamin D3

(Bxl-72; Gemini-72) (Huet et al., 2011; Maehr et al., 2007) (Fig-
ure 1A) and a steroid receptor coactivator (SRC) peptide encom-
passing a LXXLL nuclear receptor interacting motif. Although
VDRgem has a low affinity for 1,25(OH)2D3, the ligand concentra-
tion used for crystallization allows a significant fraction of the
1,25(OH)2D3 bound complex to be crystallized. Crystals formed
in presence of 1,25(OH)2D3, gemini, or Gemini-72 are isomor-
phous and belong to the space group P6522, with one LBD com-
plex per asymmetric unit. The 3D structures were solved by mo-
lecular replacement and refined to 2.35, 2.80, and 2.75 Å for
zVDRgem-1,25(OH)2D3, zVDRgem-gemini, and zVDRgem-Gemini-
72, respectively (Table S2). All complexes display the canonical
agonist conformation (data not shown; Huet et al., 2011; Rochel
and Moras, 2006; Rochel et al., 2000). In the 1,25(OH)2D3-li-
ganded zVDR LBD, Gln426 of helix 11 stabilizes His333 of helix
6, which anchors the ligand via a hydrogen bond with the 25-hy-
droxyl group of 1,25(OH)2D3 (Figure 1E). However, a conforma-
tional change occurs in the 1,25(OH)2D3-zVDRgem complex,
where the substituted His337 perturbs the orientation of
Gln426, thereby preventing its interaction with His333 (Figures
1F and S3A). Consequently, the distances between the 25-hy-
droxyl group and the two anchoring His residues (His333 and
His423) increase from 2.7 and 2.8 Å in the zVDR-1,25(OH)2D3

complex to 3.1 Å in the zVDRgem-1,25(OH)2D3 complex, thus
weakening the corresponding hydrogen bonds. In contrast, the
second side chain of the gemini analogs induces a reorientation
of His337 that now points toward the solvent, whereas Gln426 is
in a similar orientation than in the agonist bound zVDR and inter-
acts with His333 located at a distance of 2.9 Å (Figures 1G and
S3). Moreover, His337 forms an additional electrostatic interac-
tion that stabilizes Gln426. Thus, the molecular mechanism of
ligand binding discrimination by VDRgem is explained by a
disturbed hydrogen bond networks that impairs binding of
1,25(OH)2D3, but not of gemini ligands.

SRC-1 and Drip205 Coactivator Recruitment by VDRgem

Is More Efficient in the Presence of Gemini Than of
1,25(OH)2D3

To analyze the functional consequences of the Leu to His substi-
tution, coactivator peptide recruitment by the LBD of zVDR and
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zVDRgem was monitored by fluorescence anisotropy in the pres-
ence of saturating ligand concentration. Neither LBD in its apo
form binds a fluorescently labeled peptide of the SRC-1 coregu-
lator that encompasses one LXXLL nuclear receptor interacting
motif (F-SRC-P), whereas in the presence of gemini, zVDR and

zVDRgem bind F-SRC-P with a similar affinity (Kd = 3.1 ±
0.2 mM) (Figure S4A; Table S3). In contrast, in the presence of
1,25(OH)2D3, the SRC-1 peptide binding affinity of the zVDRgem

LBD is 5.6-fold lower than that of the zVDR LBD (Table S3). Thus,
at saturating ligand concentrations, the SRC-1 coactivator

Figure 1. Molecular Mechanism Underlying Selective Binding of Gemini Ligand by zVDR Leu337His
(A) Chemical structures of 1,25(OH)2D3, gemini, and Gemini-72.

(B) Conformational change of Leu337 side chain that opens an additional pocket to fit the second side chain of gemini ligands in the zVDR LBD crystal structure.

(C and D) The substitution of zVDR Leu337 by a His impairs the binding of 1,25(OH)2D3 but not gemini as shown by non-denaturating ESI-MS analysis of ligand

binding to zVDRgem. Enlarged view of the 12+, 13+, and 14+ ions of the electrospray ionization mass spectrum of zVDRgem LBD in presence of 5-fold molar excess

of 1,25(OH)2D3 (blue; C) or gemini (red; D) (see also Figures S1 and S2; Table S1).

(E–G) Detailed views of the structural impact of the mutation in zVDR show the importance of Gln426. In the native zVDR-1,25(OH)2D3 complex, Gln426 interacts

with His333 and stabilizes its coordination to the ligand (see also Table S2 and Figure S3) (E). In the zVDRgem-1,25(OH)2D3 complex, the mutated residue His337

pushes awayGln426 preventing its interactionwith His333 (F). In the complex with gemini, due to the steric effect of the ligand’s second side chain, His337 rotates

out of the pocket, allowing Gln426 to adopt its WT conformation (G). Moreover, His337 interacts with Gln426 and stabilizes the hydrogen bonds network around

the 25-hydroxyl group. The red sphere indicates a conserved water molecule. 1,25(OH)2D3 and gemini are shown in blue and light red, respectively. Nitrogen and

oxygen atoms are shown in blue and red, respectively.
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peptide is efficiently recruited by VDRgem in the presence of
gemini, but not in the presence of 1,25(OH)2D3.
The effect of VDR ligands on the interaction between VDR or

VDRgem with the coactivators SRC-1 or Drip205 was character-
ized by a mammalian two-hybrid assay. To this end, HEK293
EBNA cells were cotransfected with expression vectors that
encode fusion proteins between either VDR or VDRgem and the
viral transactivator VP16 (VDR-VP16 and VDRgem-VP16, respec-
tively) and between the Gal4 DNA binding domain (DBD) and the
nuclear receptor interacting domain (NRID) of the coactivators
SRC-1 or Drip205 (Gal4-SRC-1 NRID and Gal4-Drip NRID,
respectively) and a Gal4 luciferase reporter plasmid. A strong re-
porter activity is induced by addition of 10 nM 1,25(OH)2D3 to
cells expressing either Gal4-SRC-1 NRID or Gal4-Drip NRID in
presence of VDR-VP16, but not of VDRgem-VP16. In contrast, a
similar reporter activity is observed in such cells treated with
10 nM Gemini-72 (Figure S4B). Thus, whereas both
1,25(OH)2D3 and Gemini-72 efficiently stimulate the recruitment
of coactivators to VDR, only the latter promotes their recruitment
to VDRgem.

VDRgem Transcriptional Activity Is Selectively and
Efficiently Induced by Gemini Ligands
We further characterized the transcriptional activity of VDRgem

LBD in HEK293 EBNA cells in the presence of 1,25(OH)2D3 or
of gemini analogs.Whereas the transcriptional activities of fusion
proteins between the Gal4 DBD and the LBD of either hVDRgem

or hVDR (Gal4-hVDRgem and Gal4-hVDR, respectively) are
similar in the presence of 100 nM gemini, no transcriptional ac-
tivity was observed for Gal4-hVDRgem in response to 100 nM
1,25(OH)2D3 (Figure 2A). Consistent with these data, gemini
and Gemini-72 similarly induce the transcriptional activities of

Gal4-zVDR and Gal4-zVDRgem, whereas 1,25(OH)2D3 only in-
duces the transcriptional activity of Gal4-zVDR (Figure S5).
Ligand-induced transcriptional activities were also determined
in MCF-7 human breast cancer cells transiently transfected
with expression vectors encoding the full-length hVDR and
hVDRgem, and a luciferase reporter plasmid encompassing the
promoter region of hCYP24A1, a well-characterized VDR target
gene (Meyer et al., 2007). Both 1,25(OH)2D3 and gemini effi-
ciently induce the transcriptional activity of hVDR (EC50 of
0.97 nM and 0.06 nM for 1,25(OH)2D3 and gemini, respectively).
While VDRgem transcriptional activity is only induced by supra
physiological concentrations of 1,25(OH)2D3 (R1 mM), the EC50

of VDRgem for gemini is 18.3 nM (Figure 2B). Taken together,
our results show that VDR ligand binding and transcriptional ac-
tivity are strongly impaired by substitution of the second VDR
helix 7 N-terminal Leu to His in the presence of 1,25(OH)2D3,
but not of the gemini analogs.

Generation and Characterization of Mice
Expressing VDRgem

To analyze VDRgem activity in vivo, we generated mice in which
VDR Leu304 (the homolog of hVDR Leu309 and zVDR Leu337)
is substituted by a His, via homologous recombination in ES
cell (Figures S6A and S6B). VDRgem mice, in which both VDR al-
leles encode the VDR His304 mutant protein, are viable but
growth retarded after weaning when chow fed (Figures 3A, 3B,
5A, and 5B). They exhibit skeletal defects, including short and
thick ribs, short vertebrae, reduced length of the humerus, femur
and ilium, and enlargement of the humeral and femoral heads as
well as of the tibial plateau (Figures 3C and 3D). At 16 weeks,
bone area, bone mineral content, and bone mineral density
are 30%, 35%, and 20% lower in VDRgem mice than in WT

Figure 2. Transcriptional Activities of hVDRgem upon Gemini versus 1,25(OH)2D3 Treatments
(A) Transactivation efficiencies of hVDRgem are severely altered in the presence of 1,25(OH)2D3 but not in the presence of gemini. Transient transfection assays

with expression vectors encoding fusion proteins betweenGal4 DBD and the LBD of hVDRgem orWT VDRwere performed in HEK293 EBNA cells to evaluate their

transcriptional activity in response to 100 nM of 1,25(OH)2D3, gemini, or DMSO (vehicle).

(B) Dose-response transcriptional activities of full-length hVDR and hVDRgem on a CYP24a1 promoter containing luciferase reporter gene were determined in

MCF-7 cells. Bars represent the mean ± SD (n = 3) (see also Figure S5).
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littermates, respectively (Figures 3E and 3G), and serum calcium
levels are decreased by 30% (Figure 4A). However, in contrast to
VDR null mice, VDRgem mice do not develop alopecia even at 1
year of age (Figures 3A and 5A; data not shown). These results
indicate that VDRgem exhibits the typical hallmarks of
1,25(OH)2D3 deficiency.

To determine whether gemini ligands induce VDRgem activity
in vivo, we first evaluated serum calcium levels in VDRgem mice
to which Gemini-72 was administered every second day at
0.3 mg/kg for 3 weeks. Such treatment does not induce hypercal-
cemia in WT mice, but restores serum calcium levels in VDRgem

mice (Figure 4A), demonstrating that VDR-dependent calcium
homeostasis is normalized by Gemini-72 in these mutant mice.
In contrast, 1,25(OH)2D3 administration at similar doses does
not increase calcium levels in VDRgemmice. We next determined
the transcript levels ofCyp24a1 in the duodenum 6 hr after ligand
treatment. 1,25(OH)2D3 strongly induces Cyp24a1 transcript
levels in WT mice, in agreement with previous results (Meyer
et al., 2007), but not in VDRgem mice (Figure 4B). In contrast,
Gemini-72 induces these transcript levels in both VDRgem mice
and control littermates. Thus, these results demonstrate that

administration of Gemini-72 induces VDRgem transcriptional ac-
tivity and restores mineral ion homeostasis in VDRgem mice.

Mineral Ion and Bone Homeostasis Is More Impaired in
VDRgem Than in VDR Null Mice
Whereas the body weight of VDRgem mice is similar to that of WT
mice and VDR null mice at weaning, it is reduced by 20% in
6-week-old VDRgem and VDR null mice when chow fed. In
contrast, at 10 weeks of age, while the body weight of VDR
null mice is similar to that of WT mice, that of VDRgem mice is
decreased by 22% (Figures 5A and 5B). At this age, the body
length of VDR null mice and VDRgem mice is reduced by 10%
and 20% compared with that of age-matched WT, respectively
(Figure 5C). Moreover, the femur length is more decreased in
VDRgem mice than in VDR null mice (Figures 5D and 5E). In addi-
tion, hypocalcemia and hypophosphatemia are more severe in
10-week-old VDRgem mice than in age-matched VDR null mice,
and serum alkaline phosphatase activity is 3.2-fold more
increased in VDRgem mice than in VDR null mice (Figures 5F–
5H). Finally, at 16 weeks, bone mineral density is 2-fold more
decreased in VDRgem mice than in VDR null mice (Figure 5I).
Thus, mineral ion and bone homeostasis are more impaired in
VDRgem mice than in VDR null mice.
As duodenal VDR regulates mineral ion homeostasis (Xue

and Fleet, 2009), duodenal transcriptomic analyses of 10-
week-old WT, VDRgem, and VDR null mice were performed,
and statistically significantly deregulated transcripts with a
fold change of >1.2 or <0.8 relative to WT were considered.
Whereas the transcript levels of 322 genes are decreased in
VDRgem duodenum (Figure 6A, left), only 141 genes are down-
regulated in VDR null mice (Figure 6B, left). Gene ontology anal-
ysis with DAVID software revealed that among the top 100
downregulated genes in VDRgem mice (Figure 6C), 38% are
involved in mineral ion homeostasis (Figure 6D). In contrast,
562 genes are upregulated in VDR null mice (Figure 6B, right)
and only 140 in VDRgem mice (Figure 6A, right). Among the
top 100 upregulated genes in duodenum of VDRgem mice
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(Figure 6E), 41% are involved in inflammatory and defense re-
sponses and 14% in mineral ion homeostasis (Figure 6F).
Thus, these results show that the transcriptional program is
differentially altered in duodenum of VDRgem and VDR null
mice, with 2-fold more downregulated genes in VDRgem mice
than in VDR null mice and 3-fold more upregulated genes in
VDR null mice than in VDRgem mice. Interestingly, overall,
only 20 genes are upregulated, and 60 genes are downregu-
lated in the duodenum of both VDRgem and VDR null mice.
Among these 60 genes, the transcript levels of 35 are more
decreased in VDRgem than in VDR null mice, whereas the others
are similarly downregulated in both mice. As VDRgem and VDR
transcript levels are similar in the duodenum of VDRgem mice
and control littermates, and that VDRgem protein levels are
slightly reduced (Figures S7A and S7B), decreased gene
expression in VDRgem mice does not result from squelching
of other transcriptional regulators by overexpression of mutant
VDR.
Duodenal transcript levels of transient receptor potential

cation channel, subfamily V, member 6 (Trpv6), which encode
a protein involved in duodenal calcium absorption (Lieben and
Carmeliet, 2013a), quantified by RT-QPCR, are 7.5-fold lower
in VDRgem mice than in control littermates, whereas those of
VDR null mice are only decreased by 2-fold without reaching sta-
tistical significance (Figure 7A). Moreover, the transcript levels of
solute carrier family 30 member 10 (slc30a10) that encodes a
protein of unknown function in mice are similar in WT and VDR
null mice, but are decreased by 3-fold in VDRgem mice (Fig-

ure 7B). Finally, duodenal transcript levels of the VDR target
gene Cyp24a1 are reduced in both VDR null and VDRgem mice,
but are 5-fold lower in the latter (Figure 7C).
In agreement with previous results, chromatin immunoprecip-

itation with an antibody directed against VDR shows that WT
VDR binds to 30 region of Cyp24a1 encompassing a VDRE
(Meyer et al., 2010). Moreover, the same genomic region is
immunoprecipitated in VDRgem mice, whereas no binding is de-
tected in VDR null mice (Figure S7C). Thus, our results show that
unliganded VDRgem binds VDREs and represses VDR target
genes.
While administration of a supraphysiological bolus of

1,25(OH)2D3 or Gemini-72 (10-fold maximal tolerated dose) for
6 hr increases the transcript levels of Trpv6, Slc30a10, and
Cyp24a1 in WT mice, only Gemini-72 induces their levels in
VDRgem mice. In contrast, the expression of these genes is not
induced by these ligands in VDR null mice (Figures 7D–7F).
Taken together, our results show that VDRgem represses the
expression of known and putative VDR target genes in the duo-
denum and that their expression is induced upon Gemini-72
administration, but not by 1,25(OH)2D3, even at supraphysiolog-
ical levels.

DISCUSSION

We previously showed that gemini ligands induce specific
conformational changes in the VDR LBD by reorientation of the
second N-terminal Leu of helix 7, which opens a pocket that
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Figure 5. Phenotypic Comparison of VDR Null and VDRgem Mice
(A) Representative picture of a 10-week-old WT, VDRgem, and VDR null mouse. Note that at this age VDR null mice only exhibit slight alopecia, which is complete

at around 5 months of age, whereas no sign of alopecia are seen in VDRgem mice at any age.

(B) Body weight of VDRgem mice (black square), VDR null mice (gray triangle), and control littermates (white square) at the indicated age. *p < 0.05, **p < 0.01

VDRgem versus WT; #p < 0.05 VDR null versus WT. The dash line represents weaning time.

(C–G) Body length (C), representative picture of femurs (D), femur length (E), serum calcium (F), and phosphate (G) levels, serum alkaline phosphatase activity (H),

and bonemineral density (I) at 10-week-old (C–H) or 16-week-old (I) WT (white bars), VDR null (gray bars), and VDRgem (black bars) mice. Bars represent themean

± SEM (n = 5). *p < 0.05, **p < 0.01, ***p < 0.001. Scale bar in (D) equals 1 cm.
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accommodates the additional side chain of such ligands (Cie-
sielski et al., 2007; Huet et al., 2011). The work reported here
shows that substitution of this Leu to His in human or mouse
VDR impairs 1,25(OH)2D3, but not gemini ligand binding. VDRgem

elicits this discrimination by disturbing the hydrogen bond net-
works that anchor the natural ligand. The phenotypic features
of VDRgem mice expressing mVDRLeu304His are reminiscent
of those of vitamin D deficiency, including hypocalcemia, rickets,
and osteomalacia (Bouillon et al., 2008; Dardenne et al., 2001;
Erben et al., 2002; Panda et al., 2001; Yoshizawa et al., 1997).

Numerous VDR point mutations were identified in HVDRR hu-
man patients. Those that impair DNA binding, whether located in
the first or second zinc finger of the VDRDBD or in the LBD, have
been shown to induce bone defects and alopecia. Patients with
mutations in the VDR LBD that inhibit RXR heterodimerization,
and thus strongly impair DNAbinding, present alopecia, whereas
those with mutations that affect 1,25(OH)2D3 binding without im-
pairing DNA binding exhibit milder bone defects, but no alopecia
(Feldman and Malloy, 2014). Abnormalities resulting from muta-
tions in the VDR LBD that selectively decrease the affinity for
1,25(OH)2D3 are partially overcome by increased 1,25(OH)2D3

levels in HVDRR patients (Bouillon et al., 2008; Marx et al.,
1986). In contrast, a recent study has shown that alopecia, but
not bone defects and mineral homeostasis, is rescued in VDR
null mice by transgenic expression of a human LBD point-
mutated VDR (VDRL233S), unable to bind 1,25(OH)2D3 (Lee
et al., 2014). Interestingly, their data indicate that bone defects
might be more severe in mice expressing the highest VDRL233S

levels. Here we show that VDRgem mice, which express a VDR
mutant that does not bind 1,25(OH)2D3 even at supraphysiolog-
ical concentrations, exhibit more impaired mineral ion and bone
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Figure 6. Transcriptomic Analysis of Duo-
denum fromWT, VDRNull, and VDRgemMice
(A and B) Pie charts illustrating the number of

downregulated (A and B, left) and upregulated

(A and B, right) genes in the duodenum of

10-week-old VDRgem (A) and VDR null (B) mice

relative to aged matched WT mice.

(C–F) Heat map of the transcript levels of the 100

top downregulated genes (C) and the 100 top up-

regulated genes (E) in duodenum of 10-week-old

VDRgem mice relative to WT littermates and the

corresponding pie charts of genome ontology

annotation (D and F).

homeostasis than VDR null mice, but no
alopecia. Thus, bone defects and mineral
ion homeostasis deregulation might be
more severe in patients expressing WT
levels of ligand-binding deficient VDR
than in those with VDR mutations impair-
ing DNA binding, even though they do not
develop alopecia.
Our duodenal transcriptomic data

show that many more genes are downre-
gulated in VDRgem mice than in VDR null
mice, including several known to be
involved in mineral ion homeostasis.

Moreover, gene downregulation is generally stronger in VDRgem

mice than in VDR null mice. As VDRgem binds to VDREs and as
unliganded VDR, thyroid hormone receptors (TRs), and retinoic
acid receptors (RARs) have been shown to recruit transcriptional
repressors, our results strongly support that VDR, like TR and
RAR (Chambon, 2005; Perissi and Rosenfeld, 2005), represses
target gene expression in its apo form.
Since treatment with gemini, but not 1,25(OH)2D3, induces the

expression of VDR target genes in the intestine of VDRgem mice
and normalizes serum calcium levels, these mice provide a valu-
able animal model to temporally control VDR activity and thus to
further characterize in vivo receptor-mediated signaling path-
ways controlled by vitamin D analogs. Comparison of VDRgem

mice with WT and VDR null mice, treated or not with gemini
analogs, should also enlighten the molecular and cellular
signaling pathways controlled by 1,25(OH)2D3, as well as the
origin of hypercalcemic effects.
In summary, using a multidisciplinary integrative approach

combining structural biology and in vivo studies, we engineered
mice in which VDR activity is selectively controlled by gemini li-
gands and report the functional consequence of the loss of
ligand-induced VDR signaling in vivo. The possibility of inducing
VDRgem transcriptional activity by gemini ligands allows the
characterization of the in vivo genomic activities induced by
various gemini analogs and to determine their functional impact
at the molecular level. Thus, further phenotypic and molecular
analyses in various tissues of VDRgem, VDR null and WT mice
treated or not with 1,25(OH)2D3 or gemini ligands should provide
important insights into the signaling pathways controlled by un-
liganded and liganded VDR, including the identification of new
genes involved in vitamin D-induced hypercalcemia.
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EXPERIMENTAL PROCEDURES

Vectors, Expression, and Purification
cDNAs encoding hVDRLeu309His LBD (hVDRgem; 118–427), hVDR LBD (118–

427), zVDR LBD (156–453), and zVDR Leu337His LBD (zVDRgem; 156–453)

were cloned into pET28b vector to generate N-terminal His-tag fusion pro-

teins. Purification was carried out as previously described (Ciesielski et al.,

2007; Rochel et al., 2000), including a metal affinity chromatography and a

gel filtration.

Electrospray Ionization Mass Spectrometry
Prior to ESI-MS analysis, samples were desalted on Zeba Spin desalting col-

umns (Pierce) in 200 mM ammonium acetate (pH 8.0). ESI-MS measurements

were performed on an electrospray time-of-flight mass spectrometer (MicrO-

TOF). Purity and homogeneity of the VDR LBD proteins were verified by mass

spectrometry in denaturing conditions (samples were diluted at 2 pmol/ml in a

1:1 water-acetonitrile mixture [v/v] acidified with 1% formic acid). The mass

measurements of the noncovalent complexes were performed in ammonium

acetate (200 mM) (pH 8.0). Samples were diluted to 8 pmol/ml in the previous

buffer and continuously infused into the ESI ion source at a flow rate of 3 ml/min

through a Harvard syringe pump (Harvard Apparatus model 11). A careful

optimization of the interface parameters was performed to obtain the best

sensitivity and spectrum quality without affecting the noncovalent complexes

stability. In particular, the capillary exit ranged from 60 to 150 V with a vacuum

interface pressure of 2.3 mbar and was set to 80 V. For ligand-interaction anal-

ysis, ligands were added to the proteins in a 5-fold molar excess.

Fluorescence Anisotropy
Anisotropy titrations were carried out by adding increasing concentrations

of zVDRgem LBD complexes saturated with 1,25(OH)2D3 or gemini, to a fixed

concentration of tetramethylrhodamine-SRC-1 (RHKILHRLLQEGSPS) pep-

tide (F-SRC-P). Details of the experiments and data analysis are described

in the Supplemental Information and Figure S4.

Transactivation Assays
Human breast cancer MCF-7 and HEK293 EBNA cells were seeded into 24-

well plates (105 cells per well) and grown overnight in phenol red-free DMEM
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Figure 7. Transcript Levels of Trpv6,
Slc30a10, and Cyp24a1 in Duodenum of
WT, VDR Null, and VDRgem Mice at Basal
Level and after VDR Agonist Administration
(A–C) Basal duodenal transcript levels of transient

receptor potential cation channel, subfamily V,

member 6 (Trpv6) (A), solute carrier family 30

member 10 (Slc30a10) (B), and 1,25(OH)2D3-24

hydroxylase (Cyp24A1) (C), in 10-week-old WT

(white bars), VDR null (gray bars), and VDRgem

(black bars) mice.

(D–F) Fold increase of Trpv6 (D), Slc30a10 (E), and

Cyp24A1 (F) duodenal transcript levels by 3 mg/kg

1,25(OH)2D3 or Gemini-72 administration, relative

to vehicle treatment, in 10-week-old WT (white

bars), VDR null (gray bars), and VDRgem (black

bars) mice. Bars represent themean ± SEM (n = 5).

*p < 0.05, **p < 0.01, ***p < 0.001.

supplemented with 10% charcoal-treated fetal

bovine serum (FCS), 5% gentamicin, and

0.6 mg/ml insulin. Plasmid DNA containing lipo-

somes were formed by incubating 25 ng of the

expression plasmid pXJ440-Gal4 DBD-VDR LBD

(zVDR [154–453] and hVDR [118–427]), 250 ng of

the reporter plasmid 5x17m-TATA-luciferase,

50 ng of the pCH110-b-galactosidase vector

(used as an internal control to normalize variation

in transfection) with the transfection reagent jetPEI (Polyplus Transfection) ac-

cording to the manufacturer’s instructions. Transactivation assays were also

performed with full-length hVDR (1–427) subcloned into the T7/SV40 pro-

moter-driven pSG5 expression vector (Stratagene). The DNA segment of the

proximal promoter region (!414 to !64) of the human CYP24a1 gene was

fused with the thymidine kinase promoter driving the firefly luciferase reporter

gene. Plasmid DNA containing liposomes were formed by incubating 40 ng of

an expression vector encoding hVDR, 100 ng of reporter plasmid, and 10 ng

pEGF-C2 with Fugene 6 (Roche Diagnostics) transfection reagent for 15 min

at room temperature according to the recommendation of the manufacturer.

Four hours after transfections, cells were washed with freshly prepared PBS.

1,25(OH)2D3, gemini, Gemini-72 ligands or solvent (DMSO) were added to

the cells in phenol red-free DMEM, supplemented with 10% FCS. Twenty-

four hours after the onset of stimulation, cells were washed in PBS and treated

with 100 ml of reporter gene lysis buffer (Roche Diagnostics). Lysates were as-

sayed for luciferase activity as recommended by the supplier (Perkin-Elmer).

Luciferase activities were normalized to b-galactosidase or GFP expression.

Data represent one triplicate.

Mammalian Two-Hybrid Assay
The Gal4 DBD in cloning vector pM and the activation-domain cloning vector

pVP16 are part of the Mammalian Matchmaker Two-Hybrid Assay kit (BD Bio-

sciences Clontech). The expression vectors for the full-length hVDR fused to

VP16 (pVPVDR), the Gal4 DBD-SRC-1 NRID (pSG424-SRC-1; 570-782) and

Gal4 DBD-Drip205 NRID (pM-DRIP205; 510-787) and the reporter plasmid

pG5-LUC have been described previously (Eelen et al., 2005). pVPVDRgem

was constructed by introducing the mutation in the pVPVDR by PCR using

the primers that contain the mutation. HEK293 EBNA cells were plated into

24-well plates at 105 cells per well and grown overnight in DMEM supple-

mented with 10% charcoal-treated FCS and 40 mg/ml gentamycin. Details of

the transfections and data analysis are given in the Supplemental Information

and Figure S4.

Crystal Structures Determination
Ligands and SRC-2 (TIF-2) coactivator peptide (686- KHKILHRLLQDSS-698)

were added to zVDRgem in a 3-fold excess to saturate the receptors. Crystal-

lization of the zVDRgem complexes, diffraction data collection, and structure
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refinement were obtained as described (Huet et al., 2011). Crystallographic

data are summarized in Table S2.

Generation of VDRgem Mice
A targeting vector, encompassing VDR exons (E) 8 to 10 in which the CTG

codon encoding mouse VDR Leu304 was mutated to CAG encoding a His,

and containing a LoxP flanked cassette encoding the neomycin resistance

gene located in the intron between E9 and E10, was generated by PCR ac-

cording to standard procedures (Duteil et al., 2010) (Figure S6). Embryonic

stem cells bearing one targeted allele were identified by PCR and Southern

blotting and injected into blastocystes to generate mice bearing one targeted

allele, which were bred with CMV-Cre mice (Dupé et al., 1997) to excise the

LoxP flanked neomycin resistance gene, and generate VDRgem/+mice bearing

one VDRgem allele and one VDR WT allele (Figure S6). VDRgem mice, bearing

two VDRgem alleles, and WT littermates were generated by intercrossing

VDRgem/+ mice.

Mice
VDR null mice, in which exon 2 that contains the initiation codon is substituted

by a neo cassette, were as described (Yoshizawa et al., 1997). Mice were

maintained in a temperature- and humidity-controlled animal facility, with a

12 hr light/dark cycle and free access to water and a standard rodent chow

(ref D04; 2800 kcal/kg, 9,000mg/kg calcium and 1,000 UI/kg vitamin D3, Usine

d’Alimentation Rationelle). Animals were killed by cervical dislocation and tis-

sues immediately collected and frozen in liquid nitrogen or processed for

biochemical and histological analysis. Breeding and maintenance of mice

were performed under institutional guidelines, and all experimental protocols

were approved by the Animal Care and Use Committee of IGBMC.

Genotyping
VDRgem and VDR null mice (Yoshizawa et al., 1997) were genotyped by PCR

amplification of genomic DNA extracted from tail biopsies using the DirectPCR

extraction kit (Viagen, catalog number 102-T). Primers for genotyping VDRgem

alleles, 50-CAGAGACCTGCTCAGAGCCA-30 (primer 1) and 50-CTATGAAT

GGCCTGTGGAACCCTGT-30 (primer 3), and for VDR null alleles, 50-CACTT

GTGTAGCGCCAAGTG-30 and 50-TTCACAGGTCATAGCGTTGAA-30. To verify

the presence of the point mutated codon for His304, PCR products amplified

with the oligonucleotides 50-CTTGTGGGGGTTTAACCAGA-30 (primer 2) and

primer 3 were digested with Alu I.

RNA Preparation and Analysis
RNA was isolated with TRIzol Reagent (Invitrogen), and 5 mg of RNA was

converted to cDNA with SuperScript II reverse transcriptase (Invitrogen, Life

Technologies) and hexamers primers according to the supplier’s protocol.

qRT-PCR was performed using the QuantiTectTM SYBR Green PCR kit

(Roche) according to the supplier’s protocol. Primers were for mCyp24a1,

50-GGCGGAAGATGTGAGGAATA-30 (sense) and 50-GCCCAGCACTTGGG

TATTTA-30 (antisense); for mTrpv6, 50-CAGCAGAAGAGGATCTGGGAAT-30

(sense) and 50-CTCTGGTGCACCTCACATCC-30; for mSlc30a10, 50-GGTG

ATTCCCTGAACACCGA-30 (sense) and 50-ACGTGCAAAAGAACACCTCTG-

30 (antisense); for mVdr, 50-GCCACGGGCTTCCACTTCAACG-30 (sense) and

50-GCCTGGCAGTGTCGCCGGTT-30 (antisense); and form18S (used as an in-

ternal standard), 50-AGCTCACTGGCATGGCCTTC-30 (sense) and 50-CGCCT

GCTTCACCACCTTC-30 (antisense).

Transcriptomic Analysis
Biotinylated single-strand cDNA targets were prepared, starting from 150 ng of

total RNA, using the AmbionWT Expression Kit (catalog number 4411974) and

the Affymetrix GeneChip WT Terminal Labeling Kit (catalog number 900671)

according to Affymetrix recommendations. Following fragmentation and end

labeling, 3 mg of cDNAs were hybridized for 16 hr at 45"C on GeneChip Mouse

Gene 2.0 ST arrays (Affymetrix) interrogating 35240 RefSeq transcripts repre-

sented by approximately 27 probes spread across the full length of the tran-

script. The chips were washed and stained in the GeneChip Fluidics Station

450 (Affymetrix) and scanned with the GeneChip Scanner 3000 7G (Affymetrix)

at a resolution of 0.7 mm. Raw data (.CEL Intensity files) were extracted from

the scanned images using the Affymetrix GeneChip Command Console

(AGCC), v.4.0. CEL files were further processed with Affymetrix Expression

Console software v.1.3.1 to calculate probe set signal intensities using Robust

Multi-array Average algorithms with default settings. The FCROS method

(Dembélé and Kastner, 2014) was used to select the statistically significant

list of differentially expressed genes. The error level and the fold change

were set to 5% and 1.2%, respectively.

Chromatin Immunoprecipitation
Nuclei of duodenum from 10-week-old mice were purified and fixed 5 min in

PBS containing 1% formaldehyde and processed as described (Surjit et al.,

2011). Chromatin was immunoprecipitated with the anti-VDR antibody

D2K6W (cell signaling). Primers 50-GGCCTGTGACTTCCCAGTTA-30 (sens)

and 50-ACGTGGGATTTGCTCCTGTT-30 (antisens) were used to amplify the

30 genomic region of Cyp24a1 encompassing a VDRE.

Protein Extraction and Analysis
Duodenum were grounded with a potter at 4"C in RIPA buffer (50 mM Tris [pH

7.5], 1%Nonident P40, 0.5% sodium deoxycholate, 0.1%SDS, 150mMNaCl,

5 mM EDTA, 1 mM PMSF, and phosphatase and protease inhibitor cocktails

according the manufacturer’s protocol; PhosphoStop and Complete-Mini

EDTA free; Roche). Homogenates (50 mg of protein) were electrophoresed

on polyacrylamide gels. Proteins were electroblotted to nitrocellulose mem-

brane using a Trans-blot turbo transfer system (Biorad), immunodetected us-

ing primary antibodies directed against VDR (D2K6W, cell signaling) and

GAPDH (MAB374, Millipore Upstate Chemicon), and revealed with secondary

antibodies conjugated to horseradish peroxidase (AmershamBiosciences) us-

ing an enhanced chemiluminescence detection system (ECLplus, GE Health-

care) and an ImageQuant LAS 4000 biomolecular imager (GE Healthcare).

Blood Sample Collection and Analysis
Blood for serum analysis was collected by retro-orbital puncture, and sera

were prepared as described (Laverny et al., 2010). Calcium and phosphate

levels and alkaline phosphatase activity were determined as described

(Champy et al., 2004) and outlined on the EMPReSS website (http://www.

empress.har.mrc.ac.uk).

Duel-Energy X-ray Analysis
Bone mineral density and bone mineral content were determined by dual-en-

ergy x-ray analysis on an ultrahigh-resolution densitometer PIXImus (GE Med-

ical Systems) (Picardi et al., 2002).

ACCESSION NUMBERS

Coordinates and structure factors are deposited into the Protein Data Bank

with accession numbers 4RUJ for VDRgem-1,25(OH)2D3, 4RUO for VDRgem-

gemini, and 4RUP for VDRgem-Gemini72.
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