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  Abstract:   The constitutive androstane receptor (CAR; 

NR1I3) has emerged as one of the main drug- and xeno-

biotic-sensitive transcriptional regulators. It has a major 

effect on the expression of several oxidative and conjuga-

tive enzymes and transporters, and hence, CAR can con-

tribute to drug/drug interactions. Novel functions for CAR 

are also emerging: it is able to modulate the metabolic fate 

of glucose, lipids, and bile acids, and it is also involved in 

cell-cell communication, regulation of the cell cycle, and 

chemical carcinogenesis. Here, we will review the recent 

information available on CAR and its target gene expres-

sion, its interactions with partner proteins and mecha-

nisms of action, interindividual and species variation, 

and current advances in CAR ligand selectivity and meth-

ods used in interrogation of its ligands.  
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   Introduction 
 During the past 15 years, the constitutive androstane recep-

tor (CAR; NR1I3) has been established as a key drug- and 

xenobiotic-sensitive regulator of oxidative and conjugative 

enzymes and transporters important for drug metabolism, 

disposition, and drug interactions. Searching the PubMed 

database in January 2013 with the phrase  “ constitutive 

androstane receptor OR nr1i3 ”  yields over 860 publica-

tions, and a wealth of information on CAR and its sister, 

the pregnane X receptor (PXR; NR1I2), has been compiled 

in excellent reviews [ 1  –  24 ] listed in  Table 1 . We advise the 

readers to consult these reviews for details, and we will 

highlight only most relevant and recent findings here.   

  Brief history 
 CAR, PXR, and the vitamin D receptor (VDR; NR1I1) form 

the nuclear receptor (NR) subfamily 1, group I. In mid-

1990s, human and mouse CAR were identified as constitu-

tively active NRs potentially modulating retinoic acid sign-

aling, but the actual target genes of CAR were unknown at 

that time [ 25 ,  26 ]. Studies on phenobarbital (PB)-inducible 

expression of rodent cytochrome P450 (CYP)  2B  genes [ 27 , 

 28 ] led to the identification of PB-responsive DNA elements 

mediating the response to several classes of xenobiotics 

[ 29 ] and of CAR as the key factor interacting with these ele-

ments [ 30 ]. A string of studies in the early 2000s showed 

the following:  CYP2B  genes in  CAR  null mice were unres-

ponsive to PB-type inducers; the formation of reactive 

metabolites from liver toxins was drastically modulated; 

and liver hypertrophy and tumor promotion linked with 

PB exposure were absent [ 31  –  34 ]. Efforts during the past 

decade have shown that diverse chemical classes such as 

pesticides, fire retardants, environmental contaminants, 

drugs, and industrial chemicals can activate mammalian 

CAR receptors, albeit with species-specific effects [ 2 ,  4 ,  35 ]. 

These findings reinforce the role of CAR as a crucial sensor 

for xenobiotics, and some insights into the molecular basis 

of xenobiotic recognition have been made [ 22 ]. CAR is 

also important for the endobiotic metabolism of steroids, 

bile acids, vitamin D, thyroid hormone, and bilirubin [ 21 ], 

and evidence shows [ 36 ,  37 ] a disruption of the cellular 

homeostasis by the inappropriate activation of CAR due to 

xenobiotic exposure. Experiments in the past 5 years have 

revealed that CAR is actively controlling hepatic glucose 

and lipid metabolism, with CAR agonism producing bene-

ficial effects in animal models of obesity and insulin 
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 Table 1      Selected review articles on CAR.  

 Focus area of the review  References 

 General reviews on CAR and its 

function   

 Honkakoski et al., 2003 [ 1 ] 

 Stanley et al., 2006 [ 2 ] 

   Timsit and Negishi, 2007 [ 3 ] 

   di Masi et al., 2009 [ 4 ] 

 Evolution and species 

differences   

 Reschly and Krasowski, 2006 [ 5 ] 

 Graham and Lake, 2008 [ 6 ] 

 Human pharmacogenetics  Lamba et al., 2005 [ 7 ] 

   Lamba, 2008 [ 8 ] 

 Target genes in phase I and II 

drug metabolism and transport   

 Tirona and Kim, 2005 [ 9 ] 

 Zhou et al., 2005 [ 10 ] 

   Tolson and Wang, 2010 [ 11 ] 

   Staudinger et al., 2010 [ 12 ] 

   Higgins and Hayes, 2011 [ 13 ] 

   Chai et al., 2013 [ 14 ] 

 Cross talk and mechanisms of 

action   

 Swales and Negishi, 2004 [ 15 ] 

 Pascussi et al., 2008 [ 16 ] 

   Li and Wang, 2010 [ 17 ] 

   Chai et al., 2013 [ 14 ] 

 Role in energy (glucose and 

lipid) metabolism   

 Moreau et al., 2008 [ 18 ] 

 Wada et al., 2009 [ 19 ] 

   Gao and Xie, 2012 [ 20 ] 

   Chai et al., 2013 [ 14 ] 

 Role in metabolism of bilirubin 

and bile acids 

 Wagner et al., 2010 [ 21 ] 

 CAR ligands, activators, and 

associated in silico and in vitro 

methodology   

 Poso and Honkakoski, 2006 [ 22 ] 

 Raucy and Lasker, 2010 [ 23 ] 

 Hepatocarcinogenesis in 

human and animal models 

 K ö hle et al., 2008 [ 24 ] 

resistance [ 20 ]. The role of CAR in chemical carcino-

genesis and hepatic proliferation in rodents is currently 

under intense research [ 24 ,  38 ,  39 ], but its significance for 

humans is uncertain. The discovery and subsequent char-

acterization of PXR (as cited in a review by Chai et al. [ 14 ]) 

during the same time revealed that both receptors have a 

crucial role in regulation of drug metabolism and dispo-

sition. However, the elucidation of CAR- and PXR-medi-

ated signaling is very complex due to overlapping CAR 

and PXR ligand specificities and target gene profiles and 

to the intricate cross talk with other transcription factors 

(TFs) such as hepatocyte nuclear factor (HNF) 4 α , cAMP 

response element-binding protein, and the family of fork-

head box (Fox) proteins [ 14 ,  40 ]. An additional complex-

ity arises from the fact that CAR appears to be activated by 

some CYP inducers such as PB indirectly via a cytoplasmic 

dephosphorylation-dependent mechanism, culminating 

in nuclear translocation of CAR [ 15 ]. Exciting results on 

the physiological functions of CAR are expected because 

knowledge of CAR properties and its connections with 

other cellular processes is being accumulated.   

  Structural features of the NR CAR 

  Crystal structures of agonist-bound CAR 

 Three crystal structures of mouse or human CAR agonist-

bound ligand-binding domains (LBDs) ( Table 2 ) conform 

to the standard three-layer sandwich architecture seen in 

other NRs [ 44 ]. The CAR LBDs contain 11  α -helices and 3 

short  β -strands, and helices 2 and 2 ′  assume the 3 
10

  con-

formation [ 41 ,  42 ] ( Figure 1 A). The unique structural fea-

tures for CAR LBD include an additional helix called  “ X ”  

between helices 11 and 12 and an unusually short helix 12 

( Figure 1 A). The helix X is also present in VDR [ 45 ], retin-

oid-related orphan receptor (ROR)  β  [ 46 ], and ROR α  [ 47 ], 

but the linker between helices X and 12 appears to be more 

rigid in constitutively active RORs and CAR. The short 

helix 12 is stabilized by interactions with a lysine residue 

in helix 4 (K195 in human CAR) and intrahelical H-bonds 

[ 42 ] ( Figure 1 B), contributing in part to the constitutive 

activity. The two short 3 
10

  helices 2 and 2 ′  appear to form 

a ligand entry point as postulated for the peroxisome 

proliferator-activated receptor (PPAR)  α  [ 43 ,  48 ]. Simi-

larly to other NRs, the CAR ligand-binding pocket (LBP) 

is made up by about 30 residues in helices 2 – 7 and 10 and 

in  β -sheets 3 and 4 that form a mostly apolar lining of the 

 Table 2      The human and mouse CAR LBD crystal structures.  

 PDB ID  Protein 
molecules 

 Co-crystallized 
ligands 

 Co-regulator 
peptide 

 Resolution,  Å   Completeness, %  References 

 1XVP  hCAR  CITCO  SRC1  40.0 – 2.60  86.3  Xu et al., 2004 [ 41 ] 

   hRXR α   Pentadecanoic acid         

 1XV9  hCAR  5 β -Pregnanedione  SRC1  40.0 – 2.70  86.4  Xu et al., 2004 [ 41 ] 

   hRXR α   C16 – C18 fatty acids         

 1XLS  mCAR  TCPOBOP  TIF2  20.0 – 2.95  93.2  Suino et al., 2004 [ 42 ] 

   hRXR α   9- cis -Retinoic acid         

 1XNX  mCAR  Androsten-3 α -ol  None  30.0 – 2.90  99.8  Shan et al., 2004 [ 43 ] 

CITCO, 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4 dichlorobenzyl)oxime; TCPOBOP, 1,4-bis-[(3,5-dichloropyridyl)

oxy]benzene;  SRC1,  steroid receptor co-activator 1; TIF2, transcriptional intermediary factor 2.
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pocket, although two hydrophilic patches may allow the 

formation of hydrogen bonds with the ligands. The LBP 

volumes of CAR range from 525 to 675  Å  3 , placing them 

in size between the classical steroid receptors and PXR. 

Although the co-crystallized ligands are structurally differ-

ent, they use the hydrophobic character of the cavities and 

hydrogen bonds that are formed toward the polar residues 

to orient the ligand. In mouse CAR, none of the ligands 

makes a direct hydrogen bond contact with helix 12, but 

1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) 

forms a number of hydrophobic interactions with helix 

12 (L353) and the linker helix (L346, T350). Because these 

interactions contribute toward the stabilization of helix 

12, they may be responsible for the  “ superagonistic ”  

properties of this ligand. In human CAR, co-crystallized 

ligands do not form direct contacts with helix 12. The 

closest residue is L343, which is positioned at a distance 

of 4.9  Å  from the C21 of 5 β -pregnane-3,20-dione and 3.9  Å  

from the thiazole ring of 6-(4-chlorophenyl)imidazo[2,1- b ]

[1,3]thiazole-5-carbaldehyde  O -(3,4-dichlorobenzyl)oxime 

(CITCO). The barrier formed by residues of F161, N165, 

F234, and Y326 excludes the possibility of a direct inter-

action between the ligand and helix 12 [ 41 ,  42 ,  49 ] 

( Figure  1 B). The structure of mouse CAR co-crystallized 

with the inverse agonist androstenol indicates a structural 

change in helices 10 and 11, which resembles the inactive 

 apo  forms of NRs [ 43 ]. However, the lack of corepressor 

peptide in this structure and the unavailability of the 

ligand-free CAR crystals preclude further speculation on 

the mechanisms of (inverse) agonism.    

  Molecular modeling studies 

 Before the crystal structures for CAR LBD became avail-

able in 2004, structural features were analyzed by creating 

homology models [ 22 ]. The selection of the template had a 

substantial effect on the modeled LBP volume and residue 

orientation, as exemplified by the early excessively large 

LBP volume estimates [ 50 ] and the relatively accurate pre-

diction of the LBP performed later [ 49 ]. Prediction of the 

protein flexibility is based on molecular dynamics (MD) 

simulations [ 51 ]. Such studies have yielded information 

on the basis of constitutive and agonist-induced activity of 

CAR [ 51  –  53 ], and recently, on the probable mechanism of 

inverse agonist-induced binding of NR corepressors [ 54 ]. 

Due to the limited number of agonist-bound CAR crystal 

structures, information on binding of novel agonists must 

be acquired by docking studies and supported by, e.g., site-

directed mutagenesis. The advances in speed and incor-

poration of protein flexibility in docking programs have 

enabled more detailed analysis of ligand binding [ 54  –  57 ]. 

Due to the promiscuity for diverse ligands and the inher-

ent flexibility of CAR, the building of pharmaco phore/

 Figure 1      The crystal structure of the human CAR complexed to CITCO. 

 (A) Overall view on the whole ligand-protein complex with highlighted helices discussed in the text. (B) Detailed view on the LBP with 

some of the residues displayed that are discussed in the text. The interaction of the K195 with the terminal part of the H12 is schematically 

depicted with green dashed line. The important features are illustrated in color. The co-activator peptide bearing the LXXLL motif derived 

from steroid receptor co-activator 1 (SRC1/NCOA1) is in orange, helix 12 (H12) is in red, and helix X (HX) is in brown.    
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quantitative structure-activity relationship models remains 

problematic [ 22 ]. For a limited set of structurally similar 

ligands, the pharmacophore alignment has been possible 

[ 58  –  60 ], but for dissimilar ligands, an alignment based on 

docking is almost a necessity [ 61  –  63 ].  

  Interspecies and interindividual 
differences 

  Evolution and species differences 

 Invertebrates have a single protein orthologous to  NR1I  

genes that does not seem to respond to known xenobi-

otics [ 64 ]. In birds, the sole xenosensor appears to share 

both CAR and PXR sequence similarity and ligand-bind-

ing properties [ 65 ], and similarly, fish and  Caenorhabditis 

elegans  possess a single  NR1I  gene [ 66 ,  67 ]. The previous 

notion that CAR evolved through gene duplication of a 

single  CAR/PXR  ancestral gene has been challenged by a 

new view that all  NR1I  genes result from whole genome 

duplication [ 68 ]. This theory is supported by recent analy-

sis showing that  PXR/CAR  duplication took place after the 

split of tunicates and vertebrates but before that of fish 

and land vertebrates [ 69 ]. In contrast to  PXR , CAR   genes 

are not found in the fish lineages but are conserved in 

all land vertebrates, including amphibians. Function-

ally, mammalians use both PXR and CAR as xenosensors, 

whereas in nonmammalian land vertebrates, CAR may be 

the predominant xenosensing receptor [ 69 ]. 

 The sequence comparisons among NR1I members indi-

cate that both  CAR  and  PXR  genes have been under positive 

selection [ 70 ], presumably due to exposure to different diet-

derived xenobiotics. This divergent evolution may explain 

the wide species differences in CYP induction and/or CAR 

activation profiles, even though the basic mechanism of 

receptor activation is well conserved. The sequence similar-

ity between the mouse and human CAR LBDs is only 72%, 

in contrast to more than 90% similarity in steroid hormone 

receptors [ 5 ,  71 ]. Changes in the LBD residues contribute 

to the different sizes, contours, and contact points with 

the ligands between the mouse and human CAR LBPs. For 

examples, residues F171, N175, F244, and Y336 forming the 

 “ barrier ”  in mouse CAR do not appear to restrict the ligand 

projecting toward helix 12 as much as the correspond-

ing residues in human CAR do, enabling a direct contact 

between the mouse-specific agonist TCPOBOP with helix 

12 [ 41  –  43 ]. Second, mutagenesis studies have identified 

key residues that dictate the species-specific response to 

17 α -ethinylestradiol, an inverse agonist for human CAR and 

a partial agonist for mouse CAR (F243) and for TCPOBOP 

(M340). Third, species differences exist in residues at posi-

tions critical for human CAR function [ 49 ]. However, the 

role of these amino acid differences and extent for species-

specific ligand-dependent activation remains enigmatic 

because CAR has not been cloned and/or systematically 

characterized from many other species relevant for drug 

development such as the rat or the dog [ 72 ,  73 ].  

  Genetic variation in the human CAR 

 Exons 2 and 3 and part of exon 4 encode the DNA-binding 

domain (DBD) and the hinge regions, whereas the LBD is 

encoded by the rest of exon 4 and exons 5 – 9. Alternative 

splicing has been shown to produce at least 26 splicing 

variants, many of which contain a premature stop codon or 

code for a variant protein [ 74 ,  75 ] and thus heavily influence 

expression of functional CAR [ 76 ]. The most important iso-

forms are termed CAR1 (wild type), CAR2 (insertion of SPTV, 

near LBP), and CAR3 (insertion of APYLT in the LBD/heter-

odimerization region) [ 7 ,  77 ,  78 ]. Although CAR1 has a high 

basal activity, splice variants CAR2 and CAR3 display low 

constitutive activity. Due to the changes in the LBD struc-

tures, it is not surprising that some differences in ligand 

activation have been reported between the wild-type and 

CAR2/CAR3 isoforms [ 60 ,  79 ]. Of note, similar splice vari-

ants are not present in experimental animals. At least 30 

single-nucleotide polymorphisms (SNPs) have been identi-

fied [ 8 ,  80 ], albeit at a low frequency ( < 2%) in major popu-

lations. All five known nonsynonymous SNPs are located in 

the LBD, and two of them disrupt CAR function: H246A was 

inactive, whereas L380P had a reduced basal but normal 

CITCO-elicited  CYP3A4  reporter activity [ 81 ]. There is some 

recent evidence of CAR polymorphisms being associated 

with exposure to efavirenz, a selective substrate for human 

CYP2B6 [ 82 ,  83 ]. However, the effects of more frequent 

polymorphism in the CAR targets such as  CYP2B6  [ 84 ] may 

mask the relevance of CAR polymorphisms.   

  Regulation of CAR levels and 
activity 

  CAR expression 

 The  CAR  gene is expressed in tissues with high capacity 

for drug metabolism such as liver and intestine derived 

from the endoderm. The key regulator in such cells is 
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the HNF4 α , which recognizes a conserved element in the 

proximal  CAR  gene promoter [ 85 ,  86 ]. Different isoforms 

of HNF4 α  appear to either activate (isoform 1) or sup-

press (isoform 7) the expression of CAR in a co-activator-

dependent manner [ 86 ]. The integration of CAR to many 

physiological processes controlled by other NRs gains 

support from the findings that CAR expression and/or CYP 

inducibility is increased by the glucocorticoid receptor [ 87 ] 

and the retinoic acid receptor [ 88 ]. CAR expression is also 

activated by PXR agonists (e.g., PCN, dexamethasone [ 87 , 

 89 ]), potentially by peroxisome proliferators (e.g., fibrates 

[ 88 ]) and is dependent on thyroid hormones [ 90 ]. The dis-

covery of serum response elements in the CAR promoter 

[ 91 ] provides a link to stress-activated protein kinase 

pathways via the binding of the ETS domain-containing 

protein Elk-1. This finding may explain why many growth 

factors and the presence of serum inhibit PB-inducible 

CYP expression in several experimental settings [ 92 ] and 

why the dephosphorylation of CAR is associated with 

its nuclear translocation [ 93 ]. Finally, CAR is under the 

control of the circadian clock-related PAR-domain basic 

leucine zipper TFs such as albumin gene D-site-binding 

protein, thyrotroph embryonic factor, and hepatic leuke-

mia factor [ 94 ].  

  Cytoplasmic CAR interactions 

 Groundbreaking work from the Negishi Laboratory 

showed that CAR is complexed with heat shock protein 

90 and a retaining CCRP protein in the liver cytoplasm 

in unexposed animals [ 95 ] and that PB exposure leads to 

nuclear translocation of CAR and to target gene activation. 

The translocation process is influenced by phosphoryla-

tion status, with phosphorylation by extracellular signal-

regulated kinase 1/2 and protein kinase C affecting the 

DBD (T38 in CAR) and retaining inactive CAR in the cyto-

plasm [ 93 ,  96 ], whereas dephosphorylation by a protein 

phosphatase 1 β  (PP1 β ) and protein phosphatase 2A 

(PP2A) [ 97 ] enhances nuclear translocation of active CAR 

[ 98 ]. Also, AMP-activated protein kinase (AMPK) has been 

shown to be involved in the induction of CYPs by PB [ 99 ]. 

Although CAR itself is not phosphorylated by AMPK, this 

kinase seems to affect p300 and PPAR γ  co-activator (PGC) 

1 α , suggesting a possible mechanism for the observed liver 

kinase B1/AMPK cascade activation by indirect inducers, 

such as PB. These interactions are important as they link 

CAR activation to other signal pathways activated by, e.g., 

stress and cell proliferation pathways. Indeed, cell cycle 

proteins have been identified as CAR targets [ 100 ,  101 ]. 

CAR is required for chemically induced liver growth [ 31 ] 

and signaling via phosphorylation has long been known 

to affect CYP inducibility [ 102 ,  103 ]. 

 PPP1R16A, the membrane subunit of PP1 β , facilitates 

the ligand-independent translocation of CAR into the 

nucleus, indicating a novel mechanism for the transloca-

tion of NRs in which ligands and other receptors are not 

involved [ 98 ]. However, the translocation effect is more 

enhanced in the presence of PB. Given the fact that expo-

sure to PB decreases hepatic cell-cell communication by 

affecting the activity and levels of connexins [ 104 ,  105 ], it 

is likely that novel cytoplasmic interactions of CAR remain 

to be identified.   

  Interactions of CAR with DNA and 
nuclear partner proteins 

  Specificity of DNA binding 

 Many of the CAR target genes have been listed in earlier 

reviews ( Table 1 ). They include the established genes of 

enzymes of phase I and II biotransformation, uptake, and 

efflux transporters ( Table 3 ), but new targets continue 

to emerge in genes responsible for endobiotic metabo-

lism and cell cycle control [ 9  –  13 ]. The initially identified 

binding site for CAR/RXR heterodimer was a direct repeat 

5 (DR5; two AGGTCA-related hexamers separated by five 

nucleotides) in retinoic acid-sensitive gene promoters 

[ 25 ]. Later studies indicated that most efficacious PB-

responsive enhancers consist of clusters of DR4 elements 

in vicinity of other TF-binding sites in, e.g.,  CYP2B  and 

 UGT1A1  genes [ 30 ,  106 ]. In addition, CAR is also able to 

transactivate and/or bind the PXR-responsive DR3 and 

everted repeat (ER) 6 elements present in the proximal 

and distal regions of the  CYP3A  genes [ 107 ,  108 ] as well as 

the PPAR-responsive DR1 elements [ 109  –  111 ]. Experiments 

with in vitro-translated proteins have indicated that the 

CAR/RXR heterodimer prefers DR4 over DR5, whereas 

ER6 – ER9 elements are recognized and DR1/3 show little 

binding [ 29 ,  112 ]. CAR has been shown to bind DNA as a 

monomer in human  UGT1A1  and  MDR1  promoter elements 

and to be activated by ligands, which may point to a physi-

ological role also for CAR monomers [ 112 ,  113 ]. Intrigu-

ingly, two nucleotides at the 5 ′  flank of each hexamer 

motif appear to influence the binding of CAR/RXR or CAR 

monomer by up to 20-fold [ 112 ].  

 The lack of high-quality antibodies for CAR has 

precluded the assessment of true in vivo binding sites 

by chromatin immunoprecipitation, and selection of 
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random DNA sites by either in vitro amplification or yeast 

genetics to identify CAR-binding sites has not been per-

formed. This suggests that we do not yet have a full view 

of DNA-binding specificity by CAR, whereas gene expres-

sion studies (with selective NR ligands, delivery of siRNA 

or knockout animals) cannot distinguish between direct 

DNA binding-mediated gene activation from responses 

that are either secondary or mediated by protein/protein 

interactions.   

  Interactions with the NR co-regulators 

 The interaction partners of CAR are summarized in Table 

 4 . Most NR co-activators (CoAs) contain one or more NR 

interaction boxes, bearing a short peptide motif LXXLL, 

where L is leucine and X is any amino acid [ 114 ]. The 

anchoring salt bridges at the ends of this motif help 

orient it properly in the surface groove on the NR LBD, 

whereas the leucines provide numerous van der Waals 

interactions with the hydrophobic residues located 

in LBD helices 3, 4 – 5, and 12 [ 42 ]. The only structural 

information for CAR/CoA interactions is derived from 

the steroid receptor co-activator (SRC) family members 

NCOA1 (SRC1) and NCOA2 [transcriptional intermediary 

factor 2 (TIF2)] [ 41 ,  42 ]. Many CoAs share characteristic 

enzymatic activities such as histone acetyltransferase 

activity, which targets histones or other proteins at 

NR-regulated gene promoters for acetylation, which can 

enhance the transcriptional activity [ 115 ].  

 CAR has been shown to physically interact with all 

three members of the SRC family co-activators SRC1 [ 41 , 

 49 ], TIF2 [ 34 ], and NCOA3 (receptor-associated cofac-

tor 3, RAC3) [ 116 ] in vitro. Studies in cellular models 

indicate that all three co-activators are redundant with 

regard to enhancing CAR-mediated induction of CYP 

genes. However, only NCOA3 is able to enhance CAR 

transactivation in hepatic cells [ 38 ,  117 ]. Although CAR 

interacts with another NR co-activator NCOA6 [ 118 ], its 

liver-specific deletion does not interfere with the regu-

lation of CAR target genes [ 119 ]. However, similar tis-

sue-specific disruption of mediator of RNA polymerase 

II transcription subunit 1 (MED1) resulted in the near 

abrogation of TCPOBOP-activated gene expression and 

acetaminophen-induced hepatotoxicity [ 120 ]. It has also 

been shown that MED1 but not NCOA6 is required for 

nuclear translocation of CAR in mouse liver [ 121 ]. The 

critical effect of MED1 on CAR-mediated signaling could 

be anticipated from the fact that MED1 is a key compo-

nent of the mediator complex, which essential for tran-

scriptional activation via a variety of TFs [ 122 ]. 

 The PPAR α -interacting cofactor (PRIC) complex com-

ponent, PRIC320, associates with CAR in ligand-independ-

ent and ligand-dependent manner in vitro [ 123 ], but the 

physiological consequences of this interaction have not 

been explored further. The discovery of interaction between 

 Table 3      CAR target genes.  

 Target gene  Gene symbol a   Species 

 Phase I 

  Aldehyde dehydrogenases   Aldh1a1, 1a7    M. musculus  

  Cytochrome P450s   CYP2A6, 2B6, 2B10, 2C9, 2C19, 3A4, 3A11    H. sapiens  

    Cyp1a1, 2a4, 2b10, 3a11    M. musculus  

    Cyp2b1, 2b2, 2c6, 2c7, 3a1    R. norvegicus  

  P450 (cytochrome) oxidoreductase   Por    M. musculus  

 Phase II 

  Glutathione  S -transferases   Gsta1, a2, a3, m1, m2    M. musculus  

    Gsta1, a2, a3, m1    R. norvegicus  

  Sulfotransferases   Sult1a1, 2a1, 2a9    M. musculus  

  UDP-glucuronosyltransferases   UGT1A1    H. sapiens  

    Ugt1a1    M. musculus  

    Ugt1b2    R. norvegicus  

 Phase III 

  ATP-binding cassette family   ABCB1, C2, C3    H. sapiens  

    Abcb1a, c1, c2, c3, c4    M. musculus  

    Abcc2    R. norvegicus  

  Solute carrier transporters   Slco2a1    M. musculus  

      R. norvegicus  

  Data were compiled from di Masi et al. [ 4 ] and Tirona and Kim [ 9 ].  M. musculus, Mus musculus; H. sapiens, Homo sapiens; R. norvegicus, 
Rattus norvegicus .  a Approved by the HUGO Gene Nomenclature Committee ( http://www.genenames.org/) .  
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CAR and PGC-1 α  again highlights the connections among 

energy metabolism and detoxification [ 124 ]. Later in vivo 

studies using knockout animals demonstrated that fasting 

upregulates CAR expression and ligand-independent CAR 

activity that involves the interaction with PGC-1 α  [ 85 ]. 

 The interaction of CAR with prototypic NR core-

pressors NCoR (NCOR1) and silencing mediator of 

retinoid or thyroid hormone receptors (SMRT; NCOR2) 

in vitro explains the mechanism of inverse agonist sup-

pression of CAR activity [ 57 ,  125 ,  126 ]. Ex vivo, an asso-

ciation of CAR with SMRT on  CYP24A1  gene promoter 

has been reported, thus mediating cross talk with VDR 

signaling [ 127 ].  

  Interactions of CAR with other nuclear 
proteins 

 Additional interaction partners of CAR are listed in 

 Table 4 . In analogy to most NRs, CAR makes heterodimers 

with retinoid X receptor (RXR) isotypes [ 30 ,  112 ]; thus, the 

lack of RXR α  reduces expression of CAR target genes. In 

addition to this natural partner, CAR has been reported 

to interact with by small heterodimer partner (SHP, 

NR0B1) and NR0B2, resulting in the suppression of CAR 

activity and target gene expression [ 128 ,  129 ]. SMRT and 

NCoR can inhibit CAR-mediated signaling independent of 

SHP, demonstrating that they may bind to distinct sites 

[ 128 ]. The recently identified SHP-interacting leucine 

zipper protein (SMILE) [ 130 ] is able to interact with CAR, 

competing with co-activators TIF2 and PGC-1 α  in vitro 

and in vivo [ 131 ]. 

 In vitro and cell-based assays have shown that 

CAR interacts directly with FoxO1 and represses FoxO1-

mediated transcription of the insulin-responsive phos-

phoenolpyruvate carboxykinase 1 ( PEPCK1 ) and glucose 

6-phosphatase ( G6Pase ) promoters [ 32 ,  40 ]. These find-

ings provide a mechanistic basis to following observa-

tions: long-term treatment with PB is known to decrease 

plasma glucose levels, improve insulin sensitivity in 

diabetic patients [ 132 ], and repress rodent  PEPCK1  

and  G6Pase  [ 32 ,  133 ]. In lipogenesis, CAR counters the 

effect of PXR by suppressing lipogenic genes such as 

sterol regulatory element-binding protein 1C and fatty 

acid synthase [ 134 ]. Therefore, CAR is able to modulate 

glucose and lipid metabolism, and its activators may be 

potential candidate drugs for hepatobiliary and meta-

bolic diseases. 

 Gadd45 β  is a growth arrest- and DNA damage-

inducible protein that interacts with CAR in a ligand-

dependent way and enhances liver growth in mice. The 

administration of TCPOBOP in mice results in drug-

induced hyperplasia, which is associated with dramatic 

and rapid hepatocyte growth [ 135 ]. Although the pro-

liferation seems to be intact in  Gadd45b  null mice, the 

hepatic growth is delayed and the early transcriptional 

stimulation of CAR target genes is weaker [ 39 ]. Another 

CAR partner, a component of the splicing factor 3a, has 

been identified via yeast two-hybrid screening and con-

firmed in other interaction assays [ 136 ].  

 Table 4      List of CAR-interacting proteins.  

 CAR-interacting protein  Group/function   

 Full name  Gene symbol a  

 Steroid receptor co-activator 1 (SRC1)   NCOA1   p160 Co-activator 

 Transcriptional intermediary factor 2 (TIF2)   NCOA2   p160 Co-activator 

 Receptor-associated co-activator 3 (RAC3)   NCOA3   p160 Co-activator 

 Activating signal co-integrator 2 (ASC2)   NCOA6   General NR co-activator 

 PPAR-binding protein (PBP)   MED1   Mediator TRIP/TRAP co-activator 

 PPAR α -interacting cofactor 320 (PRIC320)   CHD9   General transcription machinery-interacting protein 

 PPAR γ  co-activator 1 α  (PGC-1 α )   PPARGC1A   General NR co-activator 

 Forkhead box O1 (FoxO1)   FOXO1   Metabolic transcriptional factor 

 Growth arrest and DNA damage-inducible 45 β  (Gadd45 β )   GADD45B   Cell cycle-regulating factor 

 Protein phosphatase 1 regulatory subunit 16A (PPP1R16A)   PPP1R16A   Regulator of signal transduction 

 Splicing factor 3a, subunit 3, 60 kDa (SF3a)   SF3A3   Splicing/inhibitor of CAR signaling 

 Nuclear receptor corepressor (NCoR)   NCOR1   General NR corepressor 

 Silencing mediator for retinoid or thyroid hormone receptors (SMRT)   NCOR2   General NR corepressor 

  For references, see the section Interactions of CAR with other nuclear proteins. aApproved by the HUGO Gene Nomenclature Committee 

( http://www.genenames.org/) .  
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  CAR ligands and associated 
methods 

  Variability of CAR ligands 

 Only few selective CAR agonists and inverse agonists are 

currently known because many reported ligands have 

turned out to modulate other NRs or TFs, hampering 

their use as tools to interrogate CAR biology. Examples of 

this low selectivity include many drugs, pesticides, and 

polychlorinated biphenyls (CAR and PXR), phthalates 

(CAR and PPAR), estrogens (CAR and estrogen recep-

tor, albeit at different affinities), and oltipraz (CAR and 

nuclear factor erythroid 2-related factor). 

 Meanwhile, the list of CAR-activating chemicals is 

rapidly expanding ( Table 5 ), including steroids [ 144 ], 

natural compounds [ 145 ], pesticides [ 139 ], industrial 

chemicals [ 146 ], drugs [ 62 ,  63 ], and various synthetic com-

pounds including thiazolidin-4-ones, sulfoamides [ 59 ], 

and flexible diaryl compounds [ 54 ,  56 ]. The activity of CAR 

is also thought to be modulated by the so-called indirect 

activators (acetaminophen, bilirubin, 6,7-dimethylscule-

tin, PB, and phenytoin) that stimulate the nuclear trans-

location of CAR and the expression of its target genes but 

without binding directly to the LBD [ 15 ,  147 ]. However, at 

least for phenytoin and PB, this view has been challenged 

because assays with natural CAR or its variants have 

shown increased reporter activity by these compounds 

[ 56 ,  79 ,  148  –  150 ].  

 The inverse agonists bind the CAR LBD and cause 

a reduction in CAR transcriptional activity due to the 

recruitment of corepressors. These include different ster-

oids, the isoquinoline carboxamide PK11195 [ 143 ] and the 

novel compound 1-[(2-methylbenzofuran-3-yl)methyl]-

3-(thiophen-2-ylmethyl) urea (S07662) [ 54 ,  57 ]. In some 

cases, reports on ligand binding and ligand-elicited CAR 

activation are controversial such as for clotrimazole [ 58 , 

 138 ] and meclizine [ 57 ,  140 ]. This might be due to differ-

ent cell lines with variable co-regulator contents used in 

the studies. The activation of CAR can be also decreased 

or increased by retinoid-like substances, but the mecha-

nisms remain unknown [ 151 ,  152 ].   

  Assays to discover novel ligands 

 One significant reason behind this expansion of CAR 

ligands has been the development of assays for the 

measurement of ligand-dependent CAR activation and/

or interaction. Most commonly, various reporter gene 

assays measure the activation of human CAR and thus 

indirectly assess CAR/ligand interaction [ 56 ,  57 ,  59 ,  61 , 

 141 ,  142 ,  145 ,  153 ]. Naturally occurring splice variants 

(CAR3) or mutated CAR LBDs are suggested to improve 

the assay sensitivity due to the lower basal activity of the 

modified receptor [ 73 ,  79 ,  146 ,  154 ]. Another approach to 

lower the basal activity has been the addition of a CAR 

inverse agonist [ 55 ,  60 ,  108 ]. Recently, a careful selection 

of the cell line used for transfection has made it possible 

to use the wild-type human CAR without any modifica-

tion to the LBD structure or the addition of any inverse 

agonists [ 56 ,  57 ]. The mammalian two-hybrid assay 

measures the ligand-dependent interaction of CAR with 

a selected co-regulator peptide. This assay appears to 

be more sensitive in identifying weak or partial agonists 

that may elicit both co-activator and corepressor recruit-

ment and very useful in dissecting the co-regulator 

profile of human CAR [ 57 ] and to gain support for human 

CAR/ligand interactions [ 35 ,  63 ]. 

 Similar CAR/co-regulator assays, which resulted in 

the identification of the potent agonist CITCO, can be 

designed for in vitro screening [ 138 ]. An LBD assem-

bly assay, originally described by Pissios et al. [ 155 ] for 

mouse CAR, is also useful in identifying novel human 

CAR ligands [ 62 ,  156 ,  157 ]. More recently, surface plasmon 

resonance has been utilized in the identification of novel 

ligands and species-specificity studies on human CAR 

[ 62 ,  137 ]. Here, a solution with CAR LBD protein and 

increasing concentrations of agonist is flushed over the 

surface bound by a co-activator peptide, and the result-

ing optical change of the surface is then monitored. 

Because the detection measures any binding reactions 

taking place on the surface, it must be carefully con-

trolled for and verified for dependency on the CAR LBD 

using, e.g., a mutated CAR. 

 Because the CAR resides in the hepatocyte cyto-

plasm in the absence of its activators, the reporter gene 

measurements have sometimes been complemented 

with nuclear translocation assays. This requires the 

transfection of primary hepatocytes with, e.g., con-

structs encoding yellow fluorescent protein-tagged CAR. 

The translocation of CAR into the nucleus in response 

to compound exposure can be monitored by confocal 

microscopy [ 23 ,  158 ]. 

 The direct assessment of CAR/ligand interactions 

in biochemical assays in vitro has lagged behind the 

reporter assays. There is limited evidence that the pres-

ence of an agonist increases DNA binding by human 

CAR/RXR heterodimers [ 108 ]. Both agonists and inverse 

agonists provide increased protection for human CAR 
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 Table 5      Latest additions to human CAR ligands and/or activators.  

 Compounds  Effect on human CAR  References 

 Steroids 

  Androstan-3 α -ol and androsten-3 α -ol  IA (h>m)  Dau et al., 2013 [ 137 ] 

  3,17 β -Estradiol and 17 α -ethinylestradiol  IA (h), A (m)  Dau et al., 2013 [ 137 ] 

  5 β -Pregnanedione  A (h), IA (m)  Maglich et al., 2003 [ 138 ] 

 Pesticides 

  Pyrethroids (e.g., permethrin, cypermethrin)  A  K ü blbeck et al., 2011 [ 56 ] 

  Carbamates (e.g., benfuracarb)  A  Abass et al., 2012 [ 139 ] 

  Organochlorines (e.g., methoxychlor, PCB153,  o,p  ′ -DDT)  A  K ü blbeck et al., 2011 [ 56 ] 

 Drugs 

  Clotrimazole  IA or A  Jyrkk ä rinne et al., 2008 [ 61 ] 

 Lynch et al. 2012 [ 63 ] 

    Meclizine    IA or inactive  Huang et al., 2004 [ 140 ] 

  Artemisinin and some derivatives  A  Burk et al., 2012 [ 62 ] 

  Carbamazepine  A  Faucette et al., 2007 [ 79 ] 

  Nevirapine  A  Faucette et al., 2007 [ 79 ] 

  Phenytoin  Activator or A  K ü blbeck et al., 2011 [ 56 ] 

 Natural polyphenols 

  Food-derived flavonoids (e.g., chrysin)  A  Yao et al., 2011 [ 141 ] 

  Alcohol-derived flavonoids (e.g., ellagic acid)  A  Yao et al., 2011 [ 141 ] 

 Plasticizers 

  Triaryl phosphates  A  Jyrkk ä rinne et al., 2008 [ 61 ] 

  Di(2-ethylhexyl)phthalate  A for hCAR2  DeKeyser et al., 2009 [ 142 ] 

 Synthetic compounds 

  CITCO  A  Maglich et al., 2003 [ 138 ] 

  Flexible diaryl compounds (FL81)  A  K ü blbeck et al., 2011 [ 56 ] 

  Thiazolidin-4-ones  A  K ü blbeck et al., 2008 [ 59 ] 

  Sulfonamides  A  K ü blbeck et al., 2008 [ 59 ] 

  A series of chemotypes  A  Li et al., 2008 [ 143 ] 

  PK11195  IA  K ü blbeck et al., 2011 [ 57 ] 

     Lynch et al., 2012 [ 63 ] 

  S07662  IA  K ü blbeck et al., 2011 [ 57 ] 

  A, agonist; IA, inverse agonist; activator, indirect activation, no evidence of direct binding; h, human CAR; m, mouse CAR.  

LBD against proteolytic digestion [ 56 ,  57 ]. Displacement 

of labeled clotrimazole from the CAR LBD by test com-

pounds [ 159 ] has the disadvantage that it cannot distin-

guish between agonists and inverse agonists. Due to the 

high basal activity and complex activation mechanisms 

of CAR as well as rather tedious protocols and/or techni-

cal issues, these assays are only low-throughput and/or 

prone to false positives [ 17 ].  

  Future directions 
 To elucidate the diverse biological functions of human 

CAR in more detail, we must first develop more potent 

and selective CAR agonists and inverse agonists. Nev-

ertheless, the combination of molecular modeling 

and biological assays [ 57 ,  59 ,  63 ] has proven a very 

fruitful approach in raising the range and diversity of 

CAR ligands. It is expected that advances in structural 

biology, such as the determination of ligand-free and 

corepressor-bound CAR LBD structures, and in com-

parative molecular modeling will resolve the frequent 

problem of PXR activation by many of the currently avail-

able CAR ligands. Second, the identification of ligand-

dependent CAR/co-regulator and cytoplasmic interac-

tions constitutes an important avenue in deciphering 

the mechanisms of CAR activation and in helping the 

identification of novel, primary CAR target genes. This 

in turn should highlight the role of CAR in processes 

of liver growth, cell-cell communication, intermediate 

metabolism, and in discovering new absorption, dis-

tribution, metabolism, and excretion (ADME)-related 

CAR targets in addition to  CYP2B6 . Finally, the develop-

ment of comprehensive assays for reliable screening of 

CAR activation will help in the prediction of its in vivo 
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relevance, in the study of its ramifications in ADME and 

drug safety research.  
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